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BACKGROUND 

Living organisms must produce functional responses to highly diverse, complex and constantly changing inputs 
(e.g. immunological responses to rapidly evolving bacteria or viruses, or learned adjustments to changing 
situations). Often organisms respond to such challenges through ‘exploratory mechanisms’ (Gerhart & Kirschner, 
1997; West-Eberhard 2003; Kirschner & Gerhart, 2005), which are complex developmental systems that operate 
by generating variation (i.e. ‘exploring’ possibilities), largely at random, testing variants’ functionality, and 
selecting the best solutions for regeneration, in an iterative developmental process. The process resembles 
adaptation by natural selection (a.k.a. ‘somatic selection’), except that it allows for ontogenetic information gain 
within a lifetime rather than conventional genetic information gain across multiple generations. 
 Diverse biological processes function in this way. For instance, the adaptive immune system generates 
antibodies and T cells with initially random variation, then internal selection multiplies and refines those that bind 
successfully to antigens, with a memory of effective molecules retained (Klenerman, 2017). The vascular and 
tracheal systems, animal learning, much collective animal behavior (e.g. central-place foraging), and micro-tubular 
systems all operate on similar principles – exploiting exploratory and selective mechanisms to generate novel 
functional responses in development (Campbell 1960; Gerhart & Kirschner, 1997). Other biological processes, 
such as the remodeling of bone and soft tissue (muscles, tendons), are known to be responsive to functional 
demands (Hall, 2015), and these processes have also been characterized as reliant on somatic selection (West-
Eberhard, 2003). The anatomical organization of brains exhibits similar adaptability. There are estimated to be 
over 100 trillion neural connections (synapses) in the human brain, several orders of magnitude more than could 
be specified by the c. 21,000 genes in our genome (Edelman, 1987; Kirschner & Gerhart, 2005). While the gross 
structure of the vertebrate nervous system is thought to be set up by the demarcation of pathways of nerve 
growth by genes (Kirschner & Gerhart 2005), experiments show that brains depend in part on exploratory 
mechanisms to establish their anatomical organization (Edelman 1987; Gerhart & Kirschner, 1997; Kirschner & 
Gerhart 2005).  During development, the nervous system generates excess neurons, excess neuronal connections, 
and excessively distributed neuronal connections, through random exploration. It then prunes these, retaining 
solely those required. Much of the patterning of the brain depends on exploratory mechanisms’ use of functional 
interactions to sort out connectivity.  The final anatomy of vertebrate brains thus depends heavily on experience.  
 Exploratory mechanisms are adaptive because rapid exploration of a large space of possibilities combined 
with feedback (e.g. reward/punishment) allows for information gain from the current environment. Crucially this 
occurs at timescales faster than genetic evolution (i.e. within individual’s lifetimes). Challenges arise from the 
internal environment too. Organisms must cope effectively with very large numbers of individual-specific ‘internal 
failures’ in somatic genome, epigenome and microbiome that are too numerous and/or unique to be anticipated 
by genetically coded plasticity, and the self-organization of random variation is critical to this form of ‘adaptive 
improvisation’ (Soen et al., 2015). As a result, across a very broad range of conditions, including unanticipated 
circumstances, organisms are often capable of producing highly functional responses. Experiments and theory 
both show that randomness in exploration is especially useful in confronting a variable or novel environment 
(Deneubourg et al 1983; Strickland et al 1995; Soen et al, 2015; Richerson 2019). Exploratory mechanisms have a 
major advantage in flexibility (Gerhart & Kirschner 1997), being self-correcting and adaptable to changes in other 
parts of the organism – e.g. resizing cortical areas to match sensory fields (Gerhart & Kirschner, 1997).  



Further particulars                       Kevin Laland & Richard Watson 

 2 

 Exploratory mechanisms can be costly systems because they are wasteful – to find effective solutions they 
must generate a very large number of variants, only a fraction of which will be retained (Gerhart & Kirschner, 
1997). Hence, natural selection should favor biases in the operation of exploratory mechanisms (e.g. allowing the 
immune system rapidly and cheaply to target a specific reliably present antigen). In principle, exploratory 
mechanisms can adjust to new challenges during ontogeny, and later these phenotypes can be stabilized by 
natural selection (e.g. generating probabilistic biases in exploration through shaping precursor cell numbers, nerve 
growth factor concentrations, or induction factor concentrations in particular regions). Yet there must be limits 
to the extent of such biases if the benefits of exploration are to be retained. That is, there is an inherent trade-off 
between being biased to produce particular responses efficiently and the cost of being able to explore novel 
responses when needed. Currently, the nature of those trade-offs is not understood.  
 
The role of auxiliary processes. There is also another important means by which systems reliant on exploratory 
mechanisms can evolve.  Exploratory mechanisms are often associated with auxiliary processes with which they 
constantly interact, and coevolve. For instance, adaptive immunity operates in concert with innate immunity, 
whilst learning interacts with perceptual, motivational and other cognitive systems. These auxiliary processes 
often evolve by conventional natural selection to generate genetic information gain on much slower timescales.  
 For illustration, to make effective memories the adaptive immune response needs to be induced (or 
‘primed’), which happens during the early stages of infection. This requires activation of the innate immune 
system, without which the adaptive immune system can be overwhelmed, as studies using genetically deficient 
mice have shown (Klenerman, 2017). The same holds for learning, where adaptive specializations have long been 
recognized (Hinde & Stevenson-Hinde, 1973). For instance, our experimental work has uncovered an adaptive 
specialization in the learning of stickleback fishes, with 9-spined but not 3-spined sticklebacks able to exploit public 
information concerning the richness of food patches (Coolen et al 2003). Further experiments reveal a shift in 
reliance on public information use in 9-spines in reproductive condition, and imply that this adaptive specialization 
likely evolved through endocrinal changes, without comprising the general learning ability of the animals (Webster 
et al 2011; Webster et al, 2019). Adaptive specialization in learning can also occur through up-regulating animals’ 
perceptual systems (Mineka & Cook, 1988; Olsson & Phelps, 2007). Refinement of auxiliary systems makes sense: 
individuals experience multiple immunological and learned challenges during their lifetimes, and cannot afford to 
comprise their future flexibility by over-adjusting to a single specific challenge (a response analogous to overfitting 
in learning theory; Kouvaris et al 2017). Our theoretical work paints a similar picture. We have found that both 
evolved inductive biases (Kouvaris et al, 2017; Kouvaris 2018) and evolved learning strategies (Kendal et al, 2009, 
2018; Toyokawa et al, 2019) can make some behaviors easier to learn, or more readily acquired than others, but 
without compromising the general learning capability. Formal equivalences between how individual animals learn 
and how populations evolve (Watson & Szathmary 2016), shed light on how organisms can evolve sensitivities to 
environmental regularities that allow them to generalize to produce adaptive variation in novel circumstances; 
reducing variability in some dimensions but increasing variability that enhances evolvability (Kouvaris et al 2017).  
 

Modeling developmental plasticity. The manner in which organisms respond to variable environmental conditions 
is usually conceptualized within evolutionary biology by norms of reaction, which specify the phenotypes of a 
single genotype expressed over a range of environments (Griffiths et al 2000). From this standpoint, the reaction 
norm is a property of the genotype, and maps the phenotype and hence evolutionary fitness of each genotype 
across environmental conditions. This allows the evolution of plastic traits to be modeled using standard 
population genetic and quantitative genetic tools, which in turn allows predictions to be made as to how plastic 
traits will evolve (Schlicting & Pigliucci, 1998; Via & Lande 1985; Sultan & Spencer 2002; Lande 2009).  

While any form of phenotypic plasticity (including exploratory processes) can be characterized as a 
reaction norm, the evolution of plasticity depends strongly on the mechanistic basis of that ‘reaction’. Formal 
models for the evolution of plasticity based on reaction norm concepts are almost always modelled as simple 
genetically-determined relationships between a range of environments and a range of responses (e.g. a linear 
function). Whilst that is a sensible starting point for modelling some forms of plasticity, it omits all exploratory 
behaviour. Importantly, that modelling approach assumes that, whatever adaptive phenotype an organism 
expresses, past evolution has already had the opportunity to select genotypes for their ability to produce this 
phenotype in this circumstance. In short, on this assumption, although the phenotype is plastic, it cannot be new 
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(aside from limited forms of interpolation or extrapolation). In contrast, when considering a plastic reaction 
produced by an exploratory process, the range of environmental possibilities and phenotypic responses may be 
very large; far too large for past selection to have sampled even a fraction of the possibilities. In this case, an 
exploratory process may find phenotypes that are genuinely novel, never before expressed in evolutionary history. 
Accordingly, this offers the possibility that significantly novel adaptive phenotypes are produced by exploratory 
processes that have not already been sampled by past selection. This demands a shift in explanatory thinking: 
how can these phenotypes be adaptive if they have not been previously exposed to selection?  

This raises the second, and arguably more important, difference from formal reaction norm models; 
exploratory processes are iterative processes of improvement utilizing within-lifetime feedback from the 
environment. The phenotype resulting from an exploratory process can be a ‘within-lifetime adaptation’, tuned 
to the current environment ‘on the fly’, and not merely a genetically predetermined response to (or simple 
function of) an environmental cue. Selection on genetic variants may then favour a strategy for producing adaptive 
phenotypes in a much more general way than tuning the slope and intercept of a reaction norm. This strategy is 
constituted by the mechanistic details of the generation, and within-lifetime selection, of phenotypic variation. 
This feedback is entirely missing in evolutionary genetic models that specify reaction norms based on non-
exploratory mechanisms (e.g. Lande 2009). For an exploratory process, the targets of evolution are thus the 
parameters of the ‘re/generate’ process and the ‘test’ process, not a simple mapping between input and output. 

Exploratory processes thus afford the possibility that phenotypes discovered by within-lifetime adaptive 
plasticity may precede genetic exploration of phenotype space (Baldwin 1896, Hinton and Nowlan 1987, West-
Eberhard 2003) – an active ‘adaptability driver’ (Bateson 2006) rather than a passive repository of genetic 
information gain. The interaction between these two adaptive timescales may be complex. For illustration, 
selection on immune responses could either lead to evolution of the innate immune system (for instance through 
specific targeting of reliably present molecules derived from microbes, such as Toll-like receptors), or to the 
selection of alleles of adaptive immunity genes (for instance, that reliably produce useful T cell or B cell variants) 
(Du Pasquier & Litman 2011). Some theory exploring adaptive dynamics across two timescales exists (e.g. Feldman 
& Cavalli-Sforza, 1976; Boyd & Richerson, 1985; Kouvaris et al, 2017; Watson et al 2014, 2016). The interaction of 
lifetime learning and genetic evolution is an example that is relatively well-developed, and one of the best known 
is Hinton and Nowlan’s (1987) model. This work confirms that lifetime learning can lead genetic evolution to find 
solutions much faster than a model without lifetime learning. However, in Hinton and Nowlan’s model, genetic 
evolution has the effect of prohibiting further exploration. This limitation is inevitable in their model because each 
trait in the phenotype vector is either entirely genetically controlled or entirely plastic. Although there are many 
such traits, and some fraction of traits may be genetically controlled whilst others remain plastic, genetic evolution 
and plastic exploration operate in the same space (a vector of traits) and necessarily compete for control of each 
phenotypic trait in a direct one-for-one manner. This precludes the possibility of genetic accommodation that 
does not result in a loss of plasticity (genetic assimilation). It is therefore not possible in this model for genetic 
evolution to bias lifetime learning without removing the exploratory process.  

At the other extreme, if genetic evolution and lifetime exploration work in entirely separate spaces then 
there is no consistent selective pressure for genetic evolution to accommodate lifetime learning since incremental 
genetic changes cannot incrementally reduce the cost of lifetime learning (Mayley 1996). How can the exploration 
operate in a phenotypic space that genetic evolution can subsequently accommodate without the two processes 
directly competing for control of the phenotype? The biology tells us there is a middle ground. One possibility is 
that genetic evolution controls the correlations between traits, rather than the traits themselves. A second is that 
exchanges between exploratory and auxiliary processes also allow for separate but interacting spaces. A third is 
that the costs and benefits of exploration trade off to maintain a frequency dependent balance with partial genetic 
accommodation. In the programme of work below, we describe a new modelling approach to address these ideas.  

The absence of a dedicated body of theory focused on the two-way interaction of evolution and 
exploratory mechanisms makes it more difficult for evolutionary biologists to envision how organisms can possess 
agency or impose direction on evolution, leading to much unresolved debate within the field (Laland et al 2014; 
Wray et al 2014; Laland et al 2015). Partly because they possess exploratory mechanisms, living organisms are not 
just passively pushed around by genes or external forces, but rather are self-regulating, purposive entities, capable 
of seeking out information, and thereby generating novel adaptive phenotypes during development. When 
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plasticity is characterized as genotypic norms of reaction it is difficult to envision plasticity playing an active 
evolutionary role, as from such a standpoint, plastic traits evolve in a manner little different from non-plastic traits 
(Laland et al 2015; Uller et al., 2019). When plasticity recognizes truly exploratory processes, acting as evolutionary 
processes on ontogenetic timescales, it becomes possible to envision how adaptive phenotypic solutions can arise 
during development, how such solutions can be truly novel (rather than immediate products of earlier selection) 
and how developmental plasticity can, not just precede in time but also, impose direction on genetic evolution 
(West-Eberhard 2003; Uller et al., 2019). To model this in a productive way that captures the biology, it is 
necessary for new models where exploration is not inevitably and inflexibly opposed by genetic assimilation.  
 

PROGRAM OF WORK 
We propose a novel interdisciplinary collaboration between a biologist (Laland, Project Leader) and computer 
scientist (Watson, Project Co-Leader), each with outstanding track records in this field. This ground-breaking study 
will pioneer computational models of adaptation in biological systems that exhibit exploratory behavior in 
interaction with genetic evolution. The novelty of our approach is to exploit the deep functional isomorphism 
between multiple adaptive timescales in learning systems, well-understood in (machine) learning theory (Watson 
& Szathmáry 2016). This has already been highly successful in modelling the interaction of variation and selection 
processes occurring on different timescales, namely, in the evolution of evolvability (Kouvaris et al, 2017; Kouvaris 
2018; Watson et al 2014, 2016; Watson & Szathmáry 2016; see also Parter et al 2008). Here we build on this earlier 
work to study the interaction of variation and selection processes both within and between generations – the 
evolution of ‘explorability’. This enables (1) the formal evolutionary analysis of exploratory mechanisms, (2) the 
simultaneous modelling of adaptive processes across two timescales, developmental and evolutionary, without 
the latter removing the former, and (3) analyses of interactions between exploratory mechanisms and auxiliary 
processes. Each extension plausibly enables forms of adaptation impossible with simpler formulations.  
 

WORK PACKAGE 1. EXPLORATORY MECHANISMS AND EVOLVABILITY 

We will devise computational models of exploratory mechanisms with the novel feature that genetic changes 
control correlations between phenotypic trait values that remain variable through lifetime exploration (‘evolving 
exploratory correlations model’, M3). We will implement directly comparable models of exploration where both 
genetic and lifetime variation operate in the same space (in the style of Hinton and Nowlan) (‘direct exploration’, 
M2), an ‘instructional’ (or ‘genetic reaction norm’, M1) model and, for completeness, a non-plastic model (M0).   

 Watson’s earlier work on the relationship between evolution and correlation learning (Watson et al, 2014, 
2016; Kouvaris et al, 2017), investigated the genetic evolution of correlations that affect the variability of genetic 
evolution (i.e. the evolution of evolvability). This work studied the interaction of evolution on two timescales – 
the relatively fast evolution of direct effects on traits and the relatively slow evolution of correlations affecting 
the co-variation of those traits – and showed that it is possible for the evolution of correlations to facilitate 
evolvability by biasing subsequent genetic exploration but not removing variability. By working in correlations, the 
slow adaptive process does not directly compete with the fast adaptive process, but instead can bias the 
combinations of traits that the fast process can produce without preventing variability in any trait. This allows the 
interaction of the two processes to solve adaptive problems that cannot be solved by either process alone. Here, 
M3 converts the timescales of these prior models to investigate the genetic evolution of correlations that affect 
within-lifetime exploration (i.e. the evolution of ‘explorability’ rather than evolution of evolvability).    

 In the exploratory models (M2 and M3), phenotypic variants will be generated through an iterative 
process of (biased) random phenotypic variation and developmental selection in response to environmental 
inputs. In M2, genetic evolution speeds up learning by removing variability on individual traits (in the style of 
Hinton & Nowlan) whereas in M3, genetic evolution controls the co-variation of exploratory variation. The latter 
will utilize a simple mechanistic model of trait interactions (Watson et al 2014). The ‘reaction norm model’ (M1) 
will generate phenotypes in response to environmental inputs just once (non-iteratively) according to genetic 
instructions, whilst M0 has genetically specified, non-plastic traits, insensitive to environment.  

 In addition to these basic scenarios, we will explore genes that specify structural features of the 
exploratory/selective process (rate of generation of variants, intensity of selective pruning, investment in 
memory/auxiliary processes). Gene influences will be modeled on known genetic influences on learning and/or 
immunity (e.g. large numbers of alleles, high capability for recombination, random mixing of elements from 
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different genes). Organisms will pay a fitness cost that is a positive function of the developmental time necessary 
to generate a suitable variant, or set of variants and/or the total number of variants generated, which will allow 
us to evaluate how the costs of exploration may affect evolutionary outcomes. Information gained by the 
developmental system potentially changes the functionality, and hence selection acting on, the genetic system, 
allowing information flow between them. Advanced work will extend the spectrum of models from univariate 
(M2), bivariate (associative) (M3), to higher-order (tensor) information systems, as well as complex restrictions 
(i.e. deep developmental networks). This allows genetic evolution to bias exploration in increasingly subtle ways 
representative of different biological cases whilst retaining generality afforded by machine learning theory. We 
will test the following hypothesis: 
 

H1: Exploratory mechanisms evolve in a qualitatively different manner from other (i.e. instructional) forms of 
plasticity, with predictable directional differences in (a) evolvability, (b) degree of plasticity, (c) adaptability, (d) 
global adaptation, (e) amount of genetic variation, and (f) memory (as specified below). 

H1a. Evolvability. Exploratory mechanisms are expected to confer on developmental systems a greater capacity 
to evolve, without themselves evolving much, by eliciting genetic change in the auxiliary process (genetic 
accommodation). In keeping with findings from previous work on the evolution of evolvability, this is expected to 
be greater for M3 than M2 (Watson et al., 2014, 2016). In contrast, instructional forms of plasticity should 
primarily evolve through genetic change in plasticity (genetic assimilation). In the absence of auxiliary processes, 
rates of genetic change should be lower in exploratory compared to instructional plasticity. Conversely, when 
coevolving with exploratory mechanisms, rates of genetic change in auxiliary processes should be greater than 
amongst genes underlying both exploratory and instructional plasticity. Exploratory mechanism M3 should 
primarily evolve through adaptive biases in auxiliary systems, and maintain a high level of variability in 
phenotypes, and fitness differences, facilitating further phenotypic adaptation, rather than limiting it.  

H1b. Plasticity. Instructional forms of plasticity will gain and lose plasticity to a greater extent than exploratory 
mechanisms, which should maintain high levels of plasticity whilst adapting to changing environments. This effect 
is expected to be greater, and sustained longer, for M3 than M2. 

H1c. Adaptability. Correlation-based exploratory mechanisms, M3, will maintain a higher level of adaptation 
across a broader range of conditions than non-correlational exploration, M2, or instructional plasticity M1. 

H1d. Global adaptation. Systems reliant on exploratory mechanism M3 will attain higher fitness phenotypes (e.g. 
globally optimal) across a broader range of conditions (C.f. M2, M1) (by analogy with Kounios et al 2016). 

H1e. Genetic variation. Where genetic variation is necessary to generate the high levels of phenotypic variation 
required for exploratory mechanisms’ functionality, developmental systems reliant on exploratory mechanisms 
will maintain greater genetic variation than systems reliant on instructional forms of plasticity. 

H1f. Properties of memories. Exploratory systems repeatedly exposed to environmental contingences or threats 
should retain (associative) memories of effective phenotypes [Watson et al 2014]. The presence and duration of 
memory should co-vary with rate of recurrence. However, in the presence of auxiliary processes, memories will 
be offloaded without precluding further exploration (see below). 

Outputs: Two papers, targeted for top journals (e.g. Nature, Science, Nature Ecology & Evolution, Evolution). 
 

WORK PACKAGE 2. THE ROLE OF AUXILIARY PROCESSES 

We will extend the models to incorporate auxiliary processes, comparing the evolutionary dynamics of auxiliary 
processes operating alone and in conjunction with exploratory mechanisms. Auxiliary processes will be modeled 
as genetically specified and non-plastic. We will test the following hypotheses: 

H2: (a) Exploratory mechanisms operating in conjunction with auxiliary processes will evolve less rapidly than 
exploratory mechanisms operating alone, and (b) auxiliary processes operating in conjunction with exploratory 
mechanisms will evolve more rapidly than auxiliary processes operating alone. 

H3: Information gained from exploratory (developmental) mechanisms will often be ‘out-sourced’ to auxiliary 
(genetic) systems, allowing developmental events to impose direction on biological evolution in a ‘one-shot 
learning’ style rather than, or in addition to, an associative learning style. 

We predict that genetic information specifying the auxiliary process will primarily comprise information initially 
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gained by the ontogenetic (exploratory) process, and that auxiliary processes operating in conjunction with 
exploratory mechanisms will evolve more rapidly (i.e. plasticity led evolution) than auxiliary processes alone.  

H4: Where ‘out-sourcing’ of information to the auxiliary process is available in conjunction with biasing the 
exploratory mechanism (M3) or incrementally fixing it (M2), out-sourcing will be favored by natural selection. 

This implies that constraints on learning or biases in the generation of variation by the adaptive immune system 
should be rare, relative to biases in perceptual/motivational systems, or evolution of innate immune responses.  

H5: Exploratory mechanisms operating in conjunction with auxiliary processes will allow for coordinated 
ontogenetic and genetic adaptation and thereby exhibit enhanced (a) evolvability, (b) adaptability, and (c) 
global adaptation, compared to exploratory mechanisms alone and instructional plasticity. 

Outputs: This work package will generate three further papers, again targeted for top journals. 
 

WORK PACKAGE 3. DESIGNING EMPIRICAL TESTS 
Design features of the theoretical work are modeled on two comparatively well-studied exploratory mechanisms, 
namely animal learning and adaptive immunity, with which the applicants and their collaborators have some 
familiarity. Animal learning is a topic that both PIs have studied for many years, including extensive experimental 
work in the Laland laboratory, whilst a parallel (separately funded) project has been established with an 
immunology lab that will allow some provisional empirical testing of the models’ applicability to acquired 
immunity. The response variables subjected to analyses have been selected for their potential to afford empirical 
tests of the models’ findings. This will ensure that the model abstractions remain closely aligned with specific 
biological systems. WP3 will develop designs for potential experimental, statistical or comparative phylogenetic 
work that evaluates these findings once the analyses are complete. The projects’ empirically testable predictions 
and recommendations for methodological approaches will be written up as a synthetic paper, and discussed at 
the workshop, as well as with other members of the wider consortium. A primary objective will be to develop a 
full-blown empirical test of the theoretical findings, suitable for submission as a future grant application, by the 
end of the current grant. 
 
Additional outputs: We will also write a synthetic paper and organize a workshop on exploratory process. 

 
SIGNIFICANCE OF PROPOSED WORK.  
1. Interdisciplinary exchange. The project has the potential to have a major impact on the fields of evolutionary 
biology, immunology, learning theory, neuroscience and psychology. Thus far each exploratory mechanism in 
different biological domains has primarily been studied independently, and with limited interaction with 
evolution, but their common underlying principles raises the possibility of general rules or patterns that apply 
across very different biological domains. In addition, in the longer term there are likely to be nontrivial practical 
uses for a model of exploratory mechanism dynamics (e.g. in predicting how the adaptive immune system will 
respond to microbial evolution and what would break it, or through facilitating new approaches and significant 
improvements to machine learning). 
2. Computational tools. The highly novel computational modelling will pioneer new tools for diverse researchers 
that study exploratory systems, forging connections between hitherto distinct fields, and leading to a deeper 
understanding of these complex forms of plasticity. The new modeling approach will be of value to other 
researchers who wish to study how purposive systems evolve. 
3. Explanatory tools. The project will not only lead to a more detailed understanding of how complex organisms 
evolve but also help to demystify current debates within evolutionary biology, including the notion of phenotype-
led evolution, the concept of organismal agency, and the evolutionary significance of active phenotypes. The 
comparison between models of exploratory and instructional plasticity will highlight limitations of the genetically 
specified reaction norm perspective common in the field. The programme of work offers the prospect of a major 
step forward in understanding how complex animals, including humans, evolve and adapt to novel threats.  
 

CAPACITY FOR SUCCESS 
This project is a novel interdisciplinary collaboration between an evolutionary biologist (Laland) and a computer 
scientist (Watson), each with outstanding track records in this field. Laland has studied the interplay between 
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learning and evolution for >30 years, producing 12 books and c.300 scientific articles, and regularly publishing in 
leading journals (e.g. Science, Nature, PNAS). He is an elected Fellow of the Royal Society of Edinburgh, has been 
the recipient of over £16m in grant income, including an ERC Advanced grant, and is widely cited (h-index=102, 
lifetime cites c. 42,000). Watson has investigated and modelled evolutionary theory using neural networks and 
computational biology for >20 years. His award-winning work has established that evolution by natural selection 
is capable of more ‘intelligent’ problem solving than previously realized – findings that led to a cover article of 
New Scientist and many other features (e.g. BBC Earth, Guardian podcast). This work has consistently expanded 
understanding of evolutionary adaptation. Watson has over 100 publications (h-index=35, lifetime cites >5,000).  
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